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Unconcatenated, unknotted polymer rings in the melt are subject to strong interactions with neighboring
chains due to the presence of topological constraints. We study this by computer simulation using the bond-
fluctuation algorithm for chains with up toN5512 statistical segments at a volume fractionF50.5 and show
that rings in the melt are more compact than Gaussian chains. A careful finite-size analysis of the average ring
sizeR}Nn yields an exponentn'0.3960.03 in agreement with a Flory-like argument for the topological
interactions. We show~using the same algorithm! that the dynamics of molten rings is similar to that of linear
chains of the same mass, confirming recent experimental findings. The diffusion constant varies effectively as
DN}N21.22(3) and is slightlyhigher than that of corresponding linear chains. For the ring sizes considered~up
to 256 statistical segments! we find only one characteristic time scaletee}N

2.0(2); this is shown by the collapse
of several mean-square displacements and correlation functions onto corresponding master curves. Because of
the shrunken state of the chain, this scaling isnot compatible with simple Rouse motion. It applies for all sizes
of ring studied and no sign of a crossover to any entangled regime is found.

PACS number~s!: 61.25.Hq, 61.41.1e

I. INTRODUCTION

Ring polymers have been extensively studied experimen-
tally by several groups, not always leading to completely
consistent results@1–7#. Indeed, the synthesis of the samples
of unknotted and nonconcatenated rings~see Fig. 1! remains
a very delicate issue@5#. Nevertheless, the general conclu-
sion emerging from these studies is that the dynamics of
rings is quite similar to that of linear chains of the same
molecular mass and density@8,7#. This is certainly a surpris-
ing result from the point of view of the reptation model,
which describes the flow behavior of entangled linear poly-
mer chains@9,10#. In this effectively single-chain model, the
constraints on the motion of a reference chain due to the
interactions with its neighbors are replaced by a curvilinear
‘‘tube’’ within which the chain ‘‘reptates:’’ relaxation of the
constraints occurs only at the chain ends. Clearly, a closed
ring polymer~having no ends! cannot reptate in this conven-
tional sense. Accordingly, the motion in a melt of rings
should be quite different from that of an analogous linear
chain system and at first sight one would expect it to be
slower. Indeed it was argued@11,10# that motion of ring
polymers should be exponentially slow and comparable with
that of star polymers@12#.

This is, however, not borne out by rheological measure-
ments on polystyrene~PS! and polybutadyene~PB! rings,
which showed that the zero-shear viscositiesh0 for melts of
rings for all molecular weights considered are similar to, but
even slightly smaller than, those for linear chains@2,5#. The
temperature dependence ofh0 in PS rings is virtually indis-

tinguishable from that of linear polystyrene of high enough
molecular weight; all viscosities display classical Williams-
Landel-Ferry~WLF! or Vogel-type temperature dependence
and they can be superimposed on a single master curve. For
linear chains, two power-law regimes arise in the mass de-
pendence of the viscosity, corresponding to Rouse-like and
entangled motion. Unexpectedly, the same is found for ring
polymers. Below a critical massMc the viscosity seems to
increase with an exponenta1'3/2, which is larger than the
expecteda151 for ideal Rouse behavior. The values for
rings and linear chains of the same molecular weight are of
similar magnitude. In the high mass regime (M.Mc) the
viscosities increase more strongly, again with a power simi-
lar to the linear case. An exponential increase in the range of
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FIG. 1. Sketch of the opposed topological constraints.~a! On the
left is a permitted configuration of an unknotted ring. It cannot turn
into the forbidden~knotted! configuration on the right~nor vice
versa!. ~b! On the left is a permitted configuration of a pair of
unknotted, unconcatenated rings. It cannot turn into the forbidden
~concatenated! configuration on the right~nor vice versa!.
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masses available~up to M'1.853105) is explicitly ex-
cluded@5,13#.

The similarity of the dynamics of ring molecules to their
linear counterparts is also reported on a more microscopic
level from tracer diffusion measurements@6,7#. Dilute la-
beled PS chains of massM , in a matrix of massP, were
measured using forward recoil spectroscopy. Different to-
pologies~rings in linear matrices@6#, linear chains in ring
matrices@7#, and rings in microgel@7#! were investigated and
compared to linear chains in linear matrices. Unfortunately,
there exist so far no systematic measurements of ring tracers
in matrices of rings~of identical size! in which the molecular
mass covers a significant range. However, consistent with
the rheological measurements quoted above, the tracer diffu-
sion of linear PS in ring matrices was found to be nearly
identical to that of linear PS in linear PS matrices@7,14#.
This is again a surprising result in view of theoretical con-
cepts of matrix-dependent tracer diffusion@11#.

A suggestion by Lodgeet al. @10# is that the experiments
on rings may be reconciled with the reptation concept by
taking into account the higher entanglement length. The criti-
cal mass for entanglement can be estimated from the viscosi-
ties or from the shear modulus. PS rings exhibit a plateau
modulus approximately one-half~one-fifth for PB! that for
linear polymers, suggesting that rings are less effective at
forming entanglements. Rubber elasticity arguments indicate
a critical mass for polystyrene cycles ofMc558 000 com-
pared toMc530 000 for linear chains. If one now makes a
comparisonat an equal number of entanglementsring melts
in fact have higher viscosities than linear chains. The experi-
mental viscosity data then lie in the unentangled-entangled
crossover region, where it is clear from the linear polymer
results that reptation is not the only available mode. This
explanation would allow a crossover to much slower ring
dynamics at very high molecular weights.

No theoretical explanation for this increase of the critical
mass exists, but it seems reasonable to relate it to the idea
that ring conformations in the melt may be partially col-
lapsed@15#. Besides the usual excluded volume interaction
between two neighboring chains there is a topological inter-
action due to the exclusion of knotted and concatenated ring
configurations~see Fig. 1!. While the excluded volume inter-
action is screened out whenever the overlap with other
chains is large~i.e., as long asRd/N@1, which is true for
large chains ifn.1/d) the topological interaction in three-
dimensions need not be screened and should cause a reduc-
tion in the size exponentn below the Gaussian value
(n51/2).

Despite this argument, no experimental study of the ra-
dius of gyration of rings in the melt appears to have been
made. A good understanding of the static properties of the
system is of course an indispensable starting point for a rea-
sonable description of the dynamics, so this is unfortunate.
Detailed static measurements~in both dilute and concen-
trated systems! could also provide a stringent test on the
quality of the ring synthesis, as McKennaet al.have pointed
out @8#. Without them, for many synthesis routes it is hard to
exclude the possibility of knotted or concatenated rings,
along with that of a small fraction of linear chain contami-
nants, which might modify the viscosity substantially~by
threading the rings, for example! @5#.

In view of those experimental difficulties, a detailed simu-
lation study to investigate both the statics and the dynamics
in a melt of rings is certainly warranted. Most previous at-
tempts are based on Pakula’s ‘‘cooperative motion algo-
rithm’’ @16,17#. While this algorithm can give correct results
for the statics~especially for melts!, its value for studying
dynamics is questionable~see Sec. II below!. In the follow-
ing we study melts of nonknotted, nonconcatenated rings
within the well-established ‘‘bond-fluctuation model’’
~BFM! to get better insight in their statics and dynamics.
Apart from its computational efficiency, an advantage of the
method is that comprehensive data for linear chains have
already been obtained@18,19# with which quantitative com-
parisons can be made. Indeed, even if ring polymers did not
exist experimentally, this comparison might help illuminate
several long-standing but still controversial issues in the dy-
namics of entangled linear chains@20#.

The article is organized as follows. In Sec. II we give
briefly some technical comments on the BFM simulation
performed. In Sec. III results on the conformation of isolated
rings ~in an athermal solvent! are presented, showing that the
unknottedness constraint is insufficient to swell the rings sig-
nificantly beyond what would be caused by excluded volume
forces alone. Molten rings, on the other hand, are found to be
quite compact with an exponentn'0.4, consistent with the
assumption@15# that roughly one degree of freedom is lost
for every topological interaction with a neighboring chain.
We then show, in Sec. IV, that the dynamics of rings and
linear chains are qualitatively similar over much of the range
of chain length that we are able to simulate. For the largest
rings, however, a perfect scaling~involving a single charac-
teristic time for each chain length! is still obeyed, whereas
for this size of linear chain significant departures are ob-
served. This allows us to confirm the suggestion that the
entanglement mass is much larger for rings.

We also study the degree to which rings thread through
one another, a question addressed in both Secs. III and IV.
This seems to be insufficient to allow large clusters of mu-
tually entangled material to build up. The extent of entangle-
ment, quantified roughly as the number of neighboring rings
contacting a given molecule, nevertheless appears relevant
for dynamics: for both rings and their linear counterparts the
diffusion constant is shown to scale as the mass of the cor-
relation hole~at least, in the range of chain lengths studied!.
Finally, in Sec. V we give our conclusions and discuss the
impact of these ring investigations on our understanding of
entangled polymer dynamics.

II. A BOND-FLUCTUATION MODEL STUDY

The algorithm used in this investigation is the well-
established bond-fluctuation model of Carmesin and Kremer
@21#. This coarse-grained three-dimensional lattice model has
proven to be especially useful for investigating the universal
features of statics and dynamics in dense polymeric melts
@18#. A small number of chemical repeat units~i.e., a Kuh-
nian segment! is mapped onto a lattice monomer such that
the relevant characteristics of polymers are retained: connec-
tivity of the monomers along a chain and excluded volume
of the monomers. Each monomer occupies a whole unit cell
of a simple cubic lattice with periodic boundary conditions.
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Adjacent monomers along a polymer are connected via one
of 108 allowed bond vectors. These are chosen such that the
local excluded volume interactions prevent the chains from
crossing each other during their motion. This conservation of
the topology ensures that the rings~which are set up initially
as thin loops! remain neither knotted with themselves nor
concatenated with one another during the relaxation and
sampling. In our athermal simulation, ‘‘local jumps’’ are re-
alized by choosing one monomer at random and attempting
to jump over the distance of one lattice spacing in one of the
six basic directions~also randomly chosen!. The attempt is
accepted if excluded volume restrictions are satisfied and the
new bond vectors to the neighbors along the ring belong to
the allowed set.

A simulation study of ring polymers has already been
made by Frischet al. @22# in the framework of the BFM.
However, due to the large CPU time demands, that study
was restricted to single rings; also the dynamical properties
were not very directly addressed. The only existing simula-
tion data on the statics and dynamics of rings in the melt use
Pakula’s ‘‘cooperative rearrangement algorithm’’@23,24#. In
contrast to the local jumps utilized in the BFM, this algo-
rithm changes simultaneously and collectively the monomer
positions on a number of different chains. While giving cor-
rectly the static properties, a clear correspondence between
Monte Carlo time and real time is yet to be established for
this algorithm and its dynamical interpretation is accordingly
unclear.

In the present BFM investigation we want to extend the
careful study of linear chains made by Paulet al. @18# to ring
polymers and compare our results to their data on linear
chains. At a filling fractionF50.5 of occupied lattice sites,
many static and dynamic features of molten polymeric ma-
terials are reproduced by the BFM. For example, the single-
chain conformations obey Gaussian statistics down to the
screening lengthj'6 ~in units of the lattice constant! of the
excluded volume interaction obtained from the static struc-
ture factor@18#. There are extensive results on the dynamical
properties covering the range from an unentangled behavior
for short chain lengths up to the onset of reptationlike motion
for chain lengthN5200. Of course, the dynamics of long
polymers in a dense melt slows down dramatically with
growing chain length and therefore poses huge demands on
CPU time requirements. For the present investigation we em-
ploy a very efficient implementation of the BFM on a mas-
sively parallel CRAY T3D supercomputer@25#. Using a two-
dimensional geometrical decomposition of the simulation
grid of linear extensionL5128, we employ 64 T3D proces-
sors. This permits us to equilibrate systems comprising
131 072 monomers and ring lengths up to 512~statics! or
256 ~dynamics! statistical segments. This study involved
about 5000 h of single processor CPU time.

The starting configurations consisted of straight rings
~loops enclosing no area! that were carefully equilibrated for
at least one relaxation time~i.e., the center of mass had
moved a distance comparable to the chain size! before any
data were taken. Indeed, for all but the longest chains, runs
were continued well beyond this~so as to generate dynami-
cal data!, which enabled us to confirm that the static chain
extensions had settled to their equilibrium values by this
time.

III. STATICS: CONFORMATIONS OF RINGS
IN THE MELT

In this section we consider the effects of the unknotted-
ness and nonconcatenation constraints on the conformational
properties of dilute and molten rings. While the effect of the
former constraint on isolated rings turns out to be irrelevant,
the nonconcatenation requirement significantly compacts
molten rings.

The size of the rings is measured first with the usual
mean-square radius of gyration^Rg

2&; as a second measure,
we define the average distance between pairs of monomers
that are N/2 monomers apart along the ring contour

^Re
2&5^(RW n2RW n1N/2)

2& and call this the mean-square ring
diameter. For isolated rings in an athermal solvent, results
for both quantities are presented in Table I. In agreement
with previous Monte Carlo studies by Frischet al. @22#, the
simulation yields a ring sizeR}Nn with exponent
n'0.595 for the radius of gyration andn'0.605 for the ring
diameter. These values are only slightly larger than the ex-
cluded volume exponent (n50.588) for linear athermal
chains, the difference lying within the range of the statistical
error. The influence of the topological constraints on the
static properties of isolated rings thus appears not to alter the
chain-swelling exponent in three dimensions~though there
may be a prefactor effect! @26#. This finding concurs with the
analytical studies of des Cloizeaux and Metha@27# and is
now also confirmed experimentally. Indeed, while early
small-angle neutron-scattering data of Dogson and Higgins
@1# seemed to indicate a nearly Gaussian statistics for rings in
good solvent, later the delicate dependence of the ring prop-
erties on preparation conditions was overcome by Had-
ziioannou@3# and Roovers@2# corroborating that the statis-
tics are the same as for linear chains in a good solvent. How-
ever, a decrease of theu temperature of isolated rings~com-
pared to linear chains! by several degrees kelvin has been
measured. This is defined by the point at which the second
virial coefficient from the light scattering measurements
equals zero and seems to be the only manifestation of the
unknottedness constraint@2,5#. A Monte Carlo study of the
u-point depression of isolated rings, including a careful
finite-size analysis, could certainly yield interesting addi-
tional information; we do not attempt this here.

The situation changes completely in the other limit of
molten rings where, confirming Pakula’s simulation@16#, we
find very compact rings~Table II!. When naively fitted with-
out any finite-size analysis, the ring sizes yield an exponent
n'0.44 for the ring diameterRe and a slightly higher value

TABLE I. Mean-square bond lengtĥb2&, radius of gyration
^Rg

2&, ring diameter^Re
2&, and diffusion constantDN for single

unknotted rings.

N ^b2& ^Rg
2& ^Re

2& DN ~units of 1024)

16 7.436 17.5 59.9 20.5~20!
32 7.455 41.1 140.2 12~2!

64 7.464 95.9 322.9 5.2~4!

128 7.468 221.9 739.6 2.55~20!
256 7.470 510 1698 1.25~20!
512 7.472 1159 3740 0.72~10!
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n'0.45 for the radius of gyrationRg . Those values are quite
similar to the ones obtained by Pakula. However, finite-size
corrections are clearly detactable in the curvature of the data
points and a more careful fitting is necessary, as explained
below and in Fig. 2. This yields in an extrapolation to the
limit of infinite masses a distinctly lower exponent
n50.3960.03, which~as it should! becomes the same for
our two measures of ring sizeRe andRg .

At the volume fractionF50.5 used in the simulation, the
excluded volume interaction is not completely screened, as
pointed out in Sec. II. This explains why the radius of gyra-
tion, which is more sensitive to short-scale structure, tends to
give larger exponentsn(N) than the diameter that probes
larger distances~Fig. 2!. At high masses this short-scale ef-
fect of the excluded volume will become less and less im-
portant, so both the ratio of diameter to the radius of gyration
~inset of Fig. 2! and the running exponentsn(N) tend to
become smaller. These exponents are plotted against the
natural variable of the screening~proportional toj/Rg) @30#;
the procedure brings all the measured valuesn(N) to lie on
straight lines, which permit a precise finite-size scaling
analysis@31#. As one sees from Fig. 2, the low masses give
exponents close to those obtained previously; the highest
masses used yield an exponentn'0.42. Only in the limit of

infinite masses does the short-scale excluded volume effect
vanish and the two lines forRe and Rg merge at a value
n50.3960.03.

This value is consistent with a crude but interesting Flory-
like estimate of the free energy of a polymer ring given by
Cates and Deutsch@15#. They argued that, if a ring of poly-
merization indexN has sizeR, it is overlapped with a num-
ber of neighboring rings of orderRd/N ~in d dimensions!.
The more spatially extended the ring, the more entropy is
lost by the nonconcatenation constraint with its neighbors.
The simplest possible estimate of this is to say that the num-
ber of degrees of freedom lost due to the constraint is pro-
portional to the numberRd/N of neighbors that the ring is
prevented from threading. This gives a contribution to the
free energy ofF}kTRd/N tending to decrease the ring size.
On the other hand, there is also an entropy penalty if the ring
becomes too squashed; the free energy required to squash a
Gaussian chain ofN steps into a region of linear sizeR less
thanN1/2 scales askTN/R2. Adding these contributions and
minimizing overR gives a characteristic size scaling asR
}Nn with n52/(d12). Hence, in three dimensions the ex-
ponent isn52/5, very close to the value found by our simu-
lation. Note that the latter value is definitely smaller than the
result n51/221/6p put forth recently by Brereton and
Vilgis @32#.

FIG. 2. Running exponents
n(N) obtained from the radius of
gyration ^Rg

2& ~circles! and the
ring diameter̂ Re

2& ~squares! ver-
sus the natural variable of the
screeningN2n. Both the two ex-
ponents and the ratiôRe

2&/^Rg
2& in

the inset lay on straight lines.
From this finite-size analysis we
obtain the exponent n'0.39
60.03 in the limit of infinite mass.

TABLE II. Mean-square bond lengtĥb2&, radius of gyration̂Rg
2&, ring diameter̂ Re

2&, ring surfaceA, number of neighbors touching
a reference chainnN , monomer mobilityW, diffusion constantDN , and rotational relaxation timetee for unknotted, unconcatenated rings
in the melt at volume fractionF50.5.

N ^b2& ^Rg
2& ^Re

2& A nN W ~units of 1023) DN ~units of 1024) tee ~units of 1014)

16 6.904 12.9 42.3 12.36 10.88 5.2 3.67~25! 0.58
32 6.913 25.7 80.6 23.30 13.60 6.6 1.62~21! 2.2
64 6.920 49.3 150.3 42.46 17.01 7.3 0.66~12! 8.7
128 6.924 92.2 274.8 76.66 21.15 7.5 0.285~45! 35
256 6.926 169.7 497.2 135.36 26.18 6.6 0.126~21! 160
512 6.927 304.0 878.0 229.88 31.50
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We note that from the measured exponents of the chain
size of an isolated chainn0'0.6 and of ring chains
nm'0.4 a crossover scaling can be obtained in the usual
way. This yields, for the ring size in the semidilute concen-
tration range,R'R0(F/F* )21/4, where the monomer den-
sity isF and the usual crossover density~overlap threshold!
is F* . The decrease in the size of a ring withF is much
more pronounced than for linear chains whereR;F21/8.

In Fig. 3 we show simulation data for the probability dis-
tribution P(Re) of the diameter of a ring as a function of the
characteristic variablex5Re /^Re

2&1/2. Data are given for
various masses up toN5256. The scaling collapse becomes
more and more perfect with increasing mass, indicating
again that the local interactions become irrelevant for ring
sizes much larger than the excluded volume screening length
j. In principle, this distribution should define some further
characteristic exponents, assuming that, as for linear chains
@33#, the distribution rises with a powerP(x)}xg for small
x and drops off essentially asP(x)}xaexp(2xd) for large
x. For isolated linear chains the exponentsg and d can be
written in terms ofn andg ~the latter is the exponent con-
trolling theN dependence of the free energy!. Unfortunately,
although the scaling in Fig. 3 is good, the data are not precise
enough to extract any corresponding exponents in this case.
Accordingly, we leave this issue for future investigations.

A quantity of more direct experimental relevance than
P(r ) is the static structure factorS(q). In Fig. 4 the values
of S(q)/N for masses up toN5512, expressed as a function
of the characteristic variableRgq, superimpose~apart from
the spurious Bragg peak in each case! onto a single master
curve. Consistent with our earlier discussion of the scaling of
the ring size, a self-similar power-law regime is apparent and
shows a fractal dimension 1/n51/0.4, as expected. The
Gaussian dimension 2 is clearly ruled out by our data@34#.

As mentioned in the Introduction and above, the probabil-
ity of threading of a ring polymer by its neighbors is impli-

cated in the mechanism of partial collapse and may also have
dynamical consequences by way of long-lived clusters of
entangled material slowing down the relaxation times. It is
difficult to define precisely what is meant by threading~in
either static or dynamical terms!, but a partial measure of the
ease with which a ring can be threaded is to measure the area
of its projection onto a random direction. This areaa is de-
fined as a signed quantity~the component in that direction of
the vector area of the ring! that vanishes for any configura-
tion in which the ring exactly retraces its own steps. A mea-
sure of the ‘‘threadability’’ is provided byA5^uau&; it turns
out thatA}Rg

2 , as shown in Fig. 5. The scaling is the same
as would be naively expected. Note that looplike configura-
tions would involve very small values ofA. The magnitude
A/Rg

2'1 indicates that the rings have no tendency to retrace
their own steps, a fact also revealed by inspection of snap-
shots.

Another quantity that may be relevant in measuring the
strength of the topological interactions is the number of
chains touching a reference chainnN . Two chains are de-
fined to be ‘‘touching’’ whenever their monomers include
pairs separated by a distance less than or equal toA6 lattice
constants.~This somewhat arbitrary microscopic distance
was chosen to include all the monomers within the first peak
of the monomer-monomer correlation function.! Intuitively,
nN should vary as the number of chains within the ‘‘correla-
tion hole’’ spanned by a given chain, and we see in Fig. 5
that nN indeed scales asRg

3/N. The plateau at high enough
masses confirms the self-similarity of rings in the melt,
which was already indicated by the scale invariance of the
diameter distribution in Fig. 3.

IV. DYNAMICS OF RINGS IN THE MELT

As pointed out in the Introduction, there is some experi-
mental evidence that the dynamics of rings are similar to

FIG. 3. Distribution function
of the ring diameterRe as a func-
tion of the reduced variable
Re /^Re

2&1/2. Data for various
masses are distinguished by dif-
ferent symbols, as indicated in the
figure. Apart from the very small
chains, all distributions superim-
pose.
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their linear counterparts, at least up to the largest molecular
masses that can readily be obtained. Our simulation data,
presented below, confirms this for rings of up toN5256
monomers by comparing mean-square displacements, chain
and cooperative motion correlation functions, and the result-
ing diffusion coefficients and relaxation times.

We characterize the dynamics by measuring three differ-
ent mean-square displacement functions describing the mo-
tion of monomersg1(t)5^@Rn(t)2Rn(0)#

2& in the labora-
tory frame, the motion of monomers in the center-of-mass
frame of a given ringg2(t)5^@Rn(t)2Rc.m.(t)2Rn(0)
1Rc.m.(0)]

2&/2, and the motion of the center of mass itself

g3(t)5^@Rc.m.(t)2Rc.m.(0)#
2&. The mean-square displace-

ment functions for molten rings are given in Fig. 6. These
quantities are scaled by the mean-square characteristic ring
size^Rg

2&, whereas the time coordinate is scaled by the rota-
tional relaxation timetee. This rotational time is the decay
time for relaxation of a ring diameter~the vectorial displace-
ment between monomersN/2 apart in the sequence!, which
is obtained from the correlation functionCee(t) described
below ~shown in Fig. 10!, and its scaling withN is shown in
Fig. 11. Apart from the massN516 all curves perfectly su-
perimpose with the use of this single scale factor for each
chain. This indicates that no second time scale is present as

FIG. 4. Structure factor
S(q)/N versus the characteristic
variable Rgq for various masses
N as indicated in the figure. The
dashed line confirms the fractal
dimension 1/n52.551/0.4. The
solid slope 2 for rings with Gauss-
ian statistics cannot match the
measured structure factor.

FIG. 5. Surface circumscribed
by a ring in the meltA, plotted as
A/Rg

2 ~circles!, and the number of
neighborsnN , plotted asnNN/Rg

3

~squares! versus N. The mass-
independent plateaus 0.8 and 3,
respectively, are reached for
masses larger thanN5100.
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would be expected for an entangled system~the entangle-
ment time!. Such scaling is sometimes called Rouse behavior
@18#, but here we describe it as ‘‘unentangled scaling’’ since
the power laws involved need not be those of the Rouse
model. Notably, no crossover whatsoever is detectable from
this scaling to a modified~reptation or other! motion, involv-
ing a second time scale, even for the largest rings studied
(N5256). This contrasts with the fact that for linear chains
of mass larger thanN5200 the unentangled scaling starts to
break down, with clear signs of a crossover to a new regime
~whose exponents could not, however, be reliably measured!
@19#. This finding confirms that any entanglement length for
rings is larger than that for linear chains of the same type, in
agreement with experimental inference@4,8#.

As mentioned before, it is tempting to associate this with
the fact that the rings are partially collapsed. Crudely, one
could argue that for a given degree of entanglement, the
number of chains in the correlation hole~which scales as
Rg
3/N) should be the same for rings and linear chains. This

would give a rough estimate ofN51000 BFM monomers as
the breakdown point of the unentangled scaling in the ring
case. This estimate is broadly consistent with the entangle-
ment mass for rings reported in experiments as lying be-
tween 2~for PS! or 5 ~for PB! times as large as for linear
chains, as discussed in the Introduction.

Qualitatively, the mean-square displacements of rings dis-
played here show behavior very similar to that of short linear
chains, up to masses of orderN5100 @18,19#. ~However, as
mentioned above, for larger masses the scaling breaks down
in the linear chain case, and in this regime the rings and
linear chains are no longer precisely alike.! While the center
of mass follows the Fickian type of diffusion at long times
(t/tee@1), a clear signature of net forces acting on the cen-
ter of mass of the chains is displayed at short times, when the
center-of-mass displacementg3 is proportional to (t/tee)

x,
with an effective exponentx'0.81. ~Within a true Rouse
model, in which each monomer in the system is subject to

uncorrelated random forces, this exponent would have the
Fickian value of unity at all times.! This effect was also
observed for linear chains with a slightly higher effective
exponentx'0.85 at the same densityF50.5 @18,19#. There
it was also verified that the exponentx is density dependent,
approaching 1 in the low density limit; it is very likely that
this is similar for rings. We can therefore conclude that, as
for linear chains, there is a net force acting on the center of
mass generated by the interaction of the test chain with sur-
rounding ones, slowing down the chain motion at short
times.

The monomer motion may also be split into two regimes
characteristic of short and long times. While in the latter the
monomeric displacements approach asymptotically that of
the whole chain@g1(t)}t#, the conformational properties of
the rings in the melt are reflected in the short-time anoma-
lous diffusion regime. The involvement of more and more
ring monomers as the lifetime of a fluctuation increases gives
by general scaling arguments a mean-square monomer dis-
placement ofg1}(t/tee)

1/(111/2n). For our rings (n'0.4)
this yields an exponent of about 0.45, which agrees well with
the dynamical simulation data shown in Fig. 6.@The agree-
ment is even better if one uses for each chain length the
measured exponentn(N), which is somewhat larger than the
extrapolated valuen(`), as explained in Sec. III.# Defining a
monomeric mobilityW by g15b2(Wt)1/(111/2n), whereb is
the monomer size, perhaps surprisingly we find~as shown in
Table II! thatW'731023 for rings is about 4 times larger
than for linear chains, whereW'1.631023. The mean-
square monomer displacement in the frame of the center of
massg2 follows ~as expected!, for small times, the same
behavior as that in the laboratory frameg1 , while for long
times it approaches~by definition! the mean-square radius of
gyration of the rings.

In order to characterize succinctly the mean-square dis-
placement curves for rings and to compare them with the
linear chain counterparts, we define~following Ref. @18#!

FIG. 6. Mean-square displace-
ments of a ring monomerg1(t),
of a monomer in the frame of the
center of massg2(t) and of the
center of massg3(t) versus the re-
duced timet/tee. The three times
t1,2,3 ~vertical dashed lines! are
defined in the text. The two hori-
zontal dashed lines correspond to
mean-square displacements of
2/3̂ Rg

2& and ^Rg
2&, respectively.

The Fickian behavior at long
times is indicated by the solid
line. The effective exponent
x50.81 of the center of mass mo-
tion at shorter times due to net
forces of neighboring chains is
displayed by the broken line. The
anomalous diffusion of a mono-
mer for molten rings with expo-
nent n50.4 is indicated by the
dash-dotted line.
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three characteristic timest1,2,3 according to the following
criteria: g1(t1)5^Rg

2&, g2(t2)52/3̂ Rg
2&, and g2(t3)

5g3(t3). Eacht parameter is a measure of the decay of the
corresponding displacement function, as indicated in Fig. 6.
Apart from a bit of scatter we obtain, independently of mass,
the ratiost2 /t1'3.3 ~compared to'0.9 for linear chains!
andt3 /t1'8 ~compared to'3). This means that, normal-
izing by the motion of a monomer in the laboratory frame,
both the center-of-mass motion and that of monomers in the
center-of-mass frame take longer to reach their long-time
asymptotic limits than is the case for linear chains.

We now discuss theprobability distribution P(x) for the
mean-square center-of-mass displacementx5@Rc.m.(t)
2Rc.m.(0)]

2. In linear chain systems, all chains behave
roughly alike and, on the time scale of motion over
one or more gyration radii, the distribution ofRc.m. is
essentially Gaussian. This would lead toP(x)
}g3(t)

23/2x21/2exp@23x/2g3(t)#. For rings, another sce-
nario is possible, in which at a given time a small number of
rings are relatively ‘‘unentangled’’~for example, with worm-
like configurations!, as discussed by Klein@11#, while others
form entangled clusters that can scarcely move. This would
yield, in the crudest picture, a bimodal distribution for
P(x) at times shorter than the lifetime of a cluster. This
possibility is apparently ruled out by the distributionsP(x)
we obtained, such as, for instance, in Fig. 7 for a melt of
rings of massN5256. The distribution for times ranging
from much smaller than the relaxation timetee51.63106

Monte Carlo steps up to times much larger could be super-
imposed on one single master curve, which shows precisely
the form expected for Gaussian scaling as considered above.

From the mean-square displacement of the center of mass
g3(t) one obtains the diffusion coefficientsDN as shown in
Fig. 8 for isolated rings and in Fig. 9 for rings at a volume
fraction F50.5. For isolated rings in athermal conditions,

the diffusion constants obeyDN'0.034/N; these are virtu-
ally identical to their linear counterparts~Fig. 8!, as one ex-
pects from an essentially Rouse dynamics in this limit~hy-
drodynamic forces are of course excluded in our model!. The
situation is somewhat different for the diffusion constants
DN obtained for rings in the melt. The first striking point is
that the rings diffusefaster than linear chains of same mass
and density. This confirms the trend found experimentally in
zero-shear viscosities for PS and PB melts of rings@8#.

Second, for rings, there is no sign of curvature on the log
plot, which is consistent with the idea that the entanglement
mass for rings is larger than for linear chains. In fact, the
diffusion constant of linear chains, also shown in Fig. 9, has
previously been interpreted in terms of a crossover from true
Rouse behavior for smallN ~which would appear as a pla-
teau on this representation! to a new, entangled regime, with
the crossover effects first appearing for 100<N<200. For
linear chains~but not rings! this crossover behavior was
much more clearly seen ing1 andg3 . Looking at the center-
of-mass diffusion data alone, however, there is no sign of a
small-N plateau and no firm evidence of a crossover to a new
regime of entangled behavior, even in the linear chain case.
This suggests that other interpretations might also be worth
investigating.

If one assumes that, within the range of masses studied,
both linear chains and rings followa singlepower-law be-
havior, then one finds, respectively,D;N21.5 and
D;N21.2 for the two cases@35#. Remarkably, therefore, in
each case that the diffusion constant varies inversely with the
mass of the ‘‘correlation hole’’ of surrounding chains,DN

}1/Rg
3 . This suggests a mental picture in which the center-

of-mass mobility of any given chain is governed by having
to ‘‘drag’’ the contents of the correlation hole along with it.
Although this picture should clearly break down for long
linear chains~where a more conventional reptation picture

FIG. 7. Distribution P(x) of
the mean-square displacementsx
of the center of massg3(t) for
chains of massN5256. Data over
a large range of time~as indicated
in the figure! collapse perfectly on
one straight line with slope23/2
when plotted asg3

3/2(t)P(x)/x1/2

versusx/g3(t), corresponding to a
Gaussian distribution of the dis-
placement variable.
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becomes appropriate!, it could provide some insight into the
behavior at intermediateN. For rings, this ‘‘intermediate’’
regime appears to be more strongly developed. If one com-
pares rings and linear chains at equal mean-square gyration
radius, then the rings have slightly smaller diffusion con-
stants than linear chains. Assuming that any increase in the
entanglement length of rings is due to partial collapse, this is
consistent with the experimental fact that the viscosities of
ring melts, compared with linear chains at an equal number
of entanglements, have slightly higher viscosities.

Master curves for some further correlation functions are
presented in Fig. 10. The correlation functionCee(t) is
analogous to the end-end vector correlation function usually

used for linear chains@9#. It describes the decay of the diam-
eter vector̂ Re(t)•Re(0)& between two monomers of a ring
separated byN/2 monomers. The relaxation timetee, used
to scale the time axis in the various plots discussed already,
is defined as the time at which this correlation function has
decayed by a factor 1/e. Note that this correlation function
shows a near-exponential decay.

This contrasts with the second correlation function
Cn(t), which measures the decay in the mean number of
chains, ‘‘touching’’~in the sense defined above! a given ref-
erence chain at time zero, that are still touching it~or touch-
ing it again! at time t. From this quantity an asymptotic
plateau value~arising from the finite size of the simulation

FIG. 8. Diffusion coefficient
NDN versus massN for isolated
rings ~circles! and linear chains
~squares!.

FIG. 9. Diffusion constant of
rings ~circles! and linear polymer
~squares! as a function of the mass
N. The diffusion constant of rings
varies effectively as NDN

}N20.22 ~solid line!. Neglecting
any curvature of the data points,
the diffusion constants of linear
chains are shown~dashed line! to
vary asNDN}N0.5. This is com-
pared to the reptation prediction
for linear chains ~dash-dotted
line!.
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cell! is subtracted so that the correlation function vanishes at
long time; we normalize toCn(0)51. ThisCn(t) apparently
decays with a power law~Fig. 10!. This correlation function
Cn(t) was defined in an attempt to monitor any possible
clustering of entangled rings~leading to a fraction of slow-
moving material! by detecting possible long-lived contacts
between rings that might arise from threading of one ring by
another. Although the number of contacting rings remains
large for times much longer than the measured diffusive re-
laxation times, there is nothing like a plateau; the power-law
decay ofCn apparently scales withtee, so there is no new
time scale due to clustering@37#. It seems that the threading

probability is not large enough to form large clusters whose
percolation~for example! could lead to new dynamical phe-
nomena.

In Fig. 11 we compare the relaxation timestee as defined
from the decay of the diameter correlation functionCee(t)
~and used above for the scaling of the time axis! with the
quantity^Rg

2&/D, which also defines a characteristic time. To
a good accuracy, these are proportional, but the latter is
larger by a factor of about 10. The scaling of the relaxation
time, by either definition, follows approximately anN2 law
~as do the timest1 , t2 , andt3 we obtained from the mean-
square displacements!, as predicted from the simple Rouse

FIG. 10. While the correlation
function of the diameter vector
Cee(t) ~data on the left-hand side
of the figure! drops off exponen-
tially, the correlation function
Cn(t) measuring the mean num-
ber of chains touching a given ref-
erence chain decays much more
softly with a power law. Data
points for various masses super-
impose when plotted versus the
reduced timet/tee.

FIG. 11. Reorientation relax-
ation time tee for rings ~circles!
and linear polymers~squares! ob-
tained fromCee(t) versus poly-
mer massN. The solid line indi-
cates the exponent 2.06 found for
the collapsed molten rings. This
value is also confirmed~dash-
dotted line! by the relaxation time
Rg
2/DN for rings ~diamonds!. The

relaxation times of linear chains
can be fitted by a power law with
exponent 2.58, as indicated by the
dashed line.
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model for Gaussian chains or rings. However, we believe
that this is fortuitous, the diffusion constant being the more
fundamental quantity; indeed, true Rouse motion for par-
tially collapsed objects~as we know the rings to be! would
give a higher power. For comparison, the relaxation time
obtained from the diffusion coefficient viaRg

2/DN for linear
chains is also plotted. In the range ofN studied, this follows
anN2.6 power law.~The linear chain values are taken out of
Ref. @18# and some data for short chains are added.!

V. CONCLUSION

In this article we have demonstrated, using the bond-
fluctuation model, various pronounced effects of topological
constraints on the static and dynamic properties of rings.
While the size of isolated rings scale as their linear counter-
parts, molten rings are quite compact objects characterized
by an exponentn50.3960.03 for the chain sizeR. This is
consistent with a crude Flory-like argument@15# suggesting
that one degree of freedom is lost for every nonconcatenation
constraint.

Experimentally, melt of rings seem to show dynamical
behavior very similar to linear chains, at least for the masses
of rings usually studied@8#. The same seems to be true in our
computational study, which is of course limited to relatively
modest masses, though ones for which, in linear chains, the
onset of entanglements would clearly be detectable. We see
no sign of a similar effect for rings, suggesting a larger ef-
fective entanglement length in the rings case. Indeed, in our
simulation ~which ignores hydrodynamics but respects the
topological constraints! conformational relaxation of the
rings is well described by a dynamical scaling involving a
single characteristic time scaletee for each chain, whereas
an entanglement crossover would introduce a second time
scale. Nonetheless, the motion is not that of a simple Rouse
model~chains moving independently subject to local friction
and uncorrelated noise!: interchain forces are manifest in the
reduced effective exponent for the center-of-mass motion at
short time scales or, equivalently, in an increase in the expo-
nent for the dependence of the single-chain relaxation time
tee on chain length. This increase, fortuitously, approxi-
mately restores the exponent to the value 2 predicted by a
simple Rouse model for Gaussian rings, despite the fact that
our rings are partially collapsed.

The breakdown of a true Rouselike dynamics@which
would give g3(t);t# for molten chains is not completely
unexpected, since the Rouse model describes only one chain
or ring in isolation. What is remarkable from the simulation
is that, for the range of masses~of both rings and linear
chains! studied so far by BFM, the slowing of the center-of-
mass motion is consistent with a picture in which each chain
or ring has to drag with it the neighbors in its correlation
hole against the resistance of local frictional forces

@D(N);Rg(N)
23#. This very simple picture may have

something to offer for understanding the diffusion of molten
linear polymers in what is classically viewed as the crossover
region between entangled and unentangled motion, although
further work is required to check whether the same relation
holds over a range of volume fractions. Note that the diffu-
sion constants and relaxation times for linear chains obtained
with the BFM agree perfectly with simulations obtained with
molecular dynamics by Kremer and Grest@18# and experi-
mental values of Richteret al. by RNA @40#; these were
always analyzed previously in terms of a crossover, although
such data do not show true Rouse behavior even for small
N ~neither does the experimental data unless corrections are
made for the dependence of the effective segmental mobility
on chain length@41#!.

Likewise for rings one has to choose whether to assume a
crossover or fit an intermediate power law to the data. The
crossover interpretation is rather forced for rings, since for
the ring sizes studied here, the intermediate~apparently
power-law! behavior shows no sign of breaking down at ei-
ther the small or large mass end of the range. Since the
nature of entanglements in ring systems remains to be clari-
fied, it is possible that this behavior could extend to quite
high masses~or even, in principle, be the true limiting result
for high N). Certainly, if an entanglement crossover is
present for rings we can say that it is at substantially higher
masses than for linear chains of the same type. In the range
of N studied, there is in particular no evidence for a cross-
over to a regime in which the rings have exponentially long
relaxation times. Such behavior would anyway be surprising
since even rings in a fixed network show an algebraic depen-
dence of the diffusion constant on mass@15,42#. In molten
linear chains, it is known that reptation cannot be the only
mode of relaxation~the prefactors predicted from the repta-
tion picture for the diffusion coefficient and for the viscosity
systematically underestimate the relaxation!, so there are
probably enough alternative modes of motion to allow relax-
ation of molten rings on an algebraic time scale even in the
limit of high masses. A full investigation of that limit must
of course await further increases of computer power, espe-
cially since, as emphasized above, any crossover to the en-
tangled regime occurs for substantially higher masses than in
the case of linear chains.
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